
Dendritic Meshing∗

LA-UR 11-04075

B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

Los Alamos National Laboratory
MS T085
P.O. Box 1663
Los Alamos, NM 87545
baj@lanl.gov

1 Introduction

A mesh is said to be dendritic if it contains elements with mid-side (edge)
nodes when the predominant element topology has only corner nodes. A den-
dritic mesh is illustrated in Figure 1 where the predominant element is a
four-node quadrilateral, but has also several five-node quadrilateral elements
each with one mid-edge node plus four corner nodes. Such meshes arise when
an approximately uniform element size is required across a mesh domain in
cases, for example, where domain geometry changes would otherwise cause
a significant variation in element size or in an Adaptive Mesh Refinement
(AMR) context. In meshes created for multi-physics applications with explicit
time-stepping, the maximum time-step size is intimately tied to element size
through the Courant-Friedrichs-Lewy condition[6]:

u∆t

∆x
≤ C (1)

where u is a representative speed,∆x the element size,∆t is the time-step size,
and C is a constant appropriate for the physics being modeled. This implies
∆t ≤ C ′∆x, C ′ a constant, and the smaller the element, the smaller the
time-step size. The smallest element in a mesh therefore limits the time-step
size providing motivation to equalize element size over a domain.

An additional concern is that the mesh adhere as nearly as possible to the
domain boundary geometry. There are two general classes of boundary-fitted
mesh generation methods (e.g., [14]): block-structured and unstructured. Both
of these methods have inherent strengths and weaknesses. The various un-
structured methods are highly automated and tend to produce meshes with

∗This work was performed at Los Alamos National Laboratory under the auspices
of U.S. Department of Energy, under contract DE-AC52-06NA25396 and has been
reviewed for general release as LA-UR 11-04075.



2 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

relatively uniform zone size. However unstructured techniques generally pro-
duce meshes with irregular zone connectivity and there is little or no control
over zone orientation or zone aspect ratio. Structured methods enable con-
trol of zone orientation, have regular connectivity, and can produce very high
aspect ratio zones (desired in some problem domains). However structured
techniques are labor-intensive and control of zone-size is limited by the geom-
etry of the problem and the domain decomposition into logical blocks. The
discussion herein focuses on boundary-fitted meshes with a relatively unform
zone size in most regions, the option to produce high aspect ratio zones in
other regions, and the ability to align the mesh with the predominant direction
of shock propogation and/or material flow. Neither of the existing meshing
methods mentioned above satisfies these criteria.

To meet these meshing requirements, a hybrid method is presented which
is termed dendritc meshing. Dendritic meshing is a modified block-structured
technique that allows logical edges within a structured mesh block to be “de-
activated” as needed to control zone size. This method combines many of
the advantages of both structured and unstructured methods. With dendritic
meshing, zone size can be kept relatively uniform when needed, zone aspect
ratio can be controlled, zone orientation can be controlled, and nodes of ir-
regular connectivity within the mesh are minimized.

The starting point for a dendritic mesh is a standard block-structured
mesh; a mesh consisting of perhaps multiple blocks each having a logical ij-
structure. To produce a dendritic mesh, selected segments of constant-i or
constant-j lines are removed. The “dendrites” are the nodes at which an i or
j line segment becomes inactive. After removing the selected mesh segments,
the mesh is re-interpolated using a specialized dendrite-aware transfinite in-
terpolation algorithm, and is then smoothed with a dendrite-aware smoother.
Figures 1 and 2 show the active and removed edges of a structured mesh in
physical and logical space, respectively.

The following sections highlight the significant issues in the dendritic mesh-
ing process. These issues are: data structures, feathering of a structured mesh,
how to build the initial mesh, trans-finite interpolation (TFI) with dendrites,
smoothing of dendritic meshes, and a brief conclusion.

2 Data Structures

The mesh is composed of a set of logically rectangular mesh blocks with the
individual blocks connected together in an unstructured fashion[14] creating
a block-structured mesh data structure. Mesh nodes for the entire problem
are stored in a single master node array. The array index of a node in this
master array is its id. The array of nodes for a mesh block stores the id’s of the
nodes for the block and not the nodes themselves. Block-to-block connectivity
is determined implicitly by shared nodes, not by an explicit block topology
data structure.



Dendritic Meshing 3

Fig. 1. A simple dendritic mesh with inactive edges shown in red.

Fig. 2. Dendritic Mesh in Logical Space. The logical coordinate system origin is in
the lower-left corner. The i-axis is horizontal and the j-axis is vertical.

Active Mesh Lines and Vertices

In addition to the array of mesh node id’s, each block also maintains an array
of Boolean ij-edge flags which indicate whether a zone mesh edge is active or
inactive. A zone is identified by its lower left corner node indices, i, j. Figure
3 shows the edge flags associated with node (i, j).

Activity of a node is determined by whether or not its edges are active. A
node is active if and only if at least one active i-edge and at least one active
j-edge connect to the node. Figure 4 shows an inactive edge (i, j) and the
associated inactive node at (i + 1, j). The (i + 1, j) node is inactive because
no active i-edges touch it.

Node Slaving

Dendritic nodes (nodes at which ij-lines terminate) are also called slave nodes.
Slave nodes are constrained to lie at the mid-point of the line connecting the
slave’s neighbors in the perpendicular logical direction of the terminating line.



4 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

i,j

i-1,j-1

i+1,j+1

i,j-1 i+1,j-1

i-1,j i+1,j

i-1,j+1 i,j+1

J-
Ed

ge
(i,
j)

I-Edge(i,j)

Fig. 3. Edge flags for node (i, j).

i,j

i-1,j-1

i+1,j+1

i,j-1 i+1,j-1

i-1,j

i-1,j+1 i,j+1

J-
Ed

ge
(i,

j) 

Inactive I-Edge(i,j)

Inactive Node
i+1,j

Slave Node

Master Node

Master Node

Inactive I-Edge(i,j)Inactive I-Edge(i,j)

Inactive Nodes

Fig. 4. Inactive edges/nodes and node slaving.



Dendritic Meshing 5

The slaving constraint for nodes on terminating i-lines and terminating j-lines
are given in Equations 2 and 3, respectively.

ri,j =
1
2

(ri,j+1 + ri,j−1) (2)

ri,j =
1
2

(ri+1,j + ri−1,j) (3)

Note that in the above equations, the ± indexing on the nodes denotes the
next/previous active node in the indicated direction and not simply the ad-
jacent node in the original structured mesh (see Figure 4).

2.1 Conversion to an Unstructured Mesh

An unstructured representation of the mesh is used for smoothing (see section
5) and for output to some physics codes. The unstructured mesh is defined as
a collection of arbitrary polyhedral zones and is built by generating polyhedral
zones from the active nodes. This is done by marching around the active edges
in the block structured mesh where a change in direction is made when the
next active edge in the opposite logical direction, for example when changing
from an i-edge to a j-edge. When a change in direction is found, the active
vertex at that change then becomes a corner vertex of the unstructured zone.
Any vertices in the zone that is not a corner vertex then becomes a slave
vertex and the two corner vertices on each side of the save vertex are the
master vertices for that slave.

Fig. 5. Dendrite treatment during conversion to an unstructured mesh.



6 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

2.1.1 Arbitrary Polyhedral Topology

Due to the hanging vertices produced by dendritic mesh lines, an arbitrary
polyhedral mesh topology is used for the unstructured mesh. This topology
defines a zone by its faces and faces are defined by their vertices. The vertices
in the face are ordered such that they define a right-handed normal relative
to the zone center. In 2-D space, a face is an edge and the order of the
vertices for each edges and the order of the edges are specified such that they
define a right-handed normal relative to the X-Y axis plane. Because of the
right-handedness of the arbitrary polyhedral topology, each zone has its own
unique set of faces. Every polygonal zone in the mesh has it’s own set of
unique faces, however the faces between two zones have the same vertices but
with a different sense. To provide mesh connectivity, the two faces with the
same vertices are linked in the data structure.

2.2 Mesh Connectivity

Special consideration must be given to boundary nodes of connected dendritic
mesh blocks. Figure 6 illustrates the cases that must be considered. These
cases are:

1. Vertex-Glue: An active boundary node shared among blocks
2. Edge-Glue: A boundary node active in one block, but absent in the

adjoing block
3. Inactive Node: An inactive boundary node in one block, but absent in

the adjoing block

Vertex-glue is treated in the obvious way – the node is present in both blocks
in the final mesh. Edge-glue represents a boundary dendrite. This requires
identifying the edge-glue node as a dendrite and indentifying its master nodes
to ensure it is properly slaved. During conversion to an unstructured format,
treatement of zones containing edge-glue nodes is analogous to that of den-
dritic zones (see section 2.1) with the added complication that the zones are in
different blocks. Inactive boundary nodes are the end points of inactive edges
extending to a block boundary. Inactive boundary nodes exist to maintain the
logically rectangular structure of the block, but are ignored in block-to-block
connectivity calculations.

3 Feathering

Feathering is the process used to convert a structured mesh block into a den-
dritic mesh block. Currently, feathering is limited to a single logical direction
within any given mesh block. Multi-directional feathering capability is in de-
velopment.



Dendritic Meshing 7

Fig. 6. Block-to-block connectivity: Vertex glue, edge glue, and inactive vertices.

Validity Constraints

A valid dendritic block-structured mesh must obey the following constraints:

1. The set of mesh zones is a disjoint partition of rectangles in the logical
space of a mesh block. This basically means that zones must be convex in
logical space (e.g., no L-shaped zones) and that there can be no dangling
mesh edges (i.e. a vertex must have two active mesh edges).

2. Slave nodes cannot also be Master nodes (i.e., no recursive slaving)

Base Mesh Resolution

Unlike a structured mesh, a dendritic mesh block does not have constraints on
the resolution of its boundaries in the direction of feathering. The boundary
resolutions in the logical direction(s) of feathering need not match one another
and may each be different than the resolution of the block in logical space.
In some cases, the geometry of a mesh block may dictate that the maximum
active edge count in the block occur in the interior of the block to maintain
a desired zone size (e.g., meshing a football). Figure 7 shows an example of a
boundary resolution mismatch and an interior resolution that is larger than
either of the boundary resolutions. The mesh block in Figure 7 is generated



8 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

Fig. 7. Feathering with an interior and boundary resolution mismatch (red lines
are inactive edges).

with the constraint that a uniform zone size be maintained. Note that for the
case in Figure 7 the i-resolution of the block is determined by the resolution
needed in the interior of the block to maintain uniform zoning after feathering.

Feather Schemes

Feather schemes determine the order in which mesh edges are removed for a
given logical sheet. Note however, that the scheme does not determine how
many edges are removed. There are three feathering schemes (patterns) cur-
rently supported. They are boundary feathering where edges are removed near
one of the logical boundaries of the block, centered feathering where edges are
removed near the center of the block logical space, and distributed feathering
where edges are removed in a distributed manner throught the logical space of
the block. The boundary and distributed schemes have the option to prevent
edges from being removed immediately adjacent to a boundary by specifying
an integer offset to indicate how many layers of un-featherd zones to leave
next to either or both boundaries. Figures 7 and 8 show examples of the
boundary and centered schemes. The distributed scheme is shown in Section
1, Figure 1.

Distributed feathering requires that edges to be removed from the mesh
be more-or-less uniformly distributed across the width of the mesh. We do
not want the removed edges to cluster to one side or the other, or to be
preferentially located near the block’s center or near the block boundaries.
This outcome is achieved by means of a repulsive “potential” acting between
removed edges. The potential is calculated in logical coordinate (index) space,
and periodic boundary conditions are employed to prevent removed edges from
clustering near the block boundaries. We arbitrarily use a 1/r2 potential (a



Dendritic Meshing 9

Fig. 8. Feathering with the center scheme.

1/r potential would serve equally well) to select the next edge to be removed
based on minimization of the potential produced by existing removed edges.

Removing Edges

Given a base mesh resolution and a desired feathering scheme, the only piece
of information missing is the number of edges to be removed at each logical
sheet in the feather direction. The count of edges to be removed is determined
by calculating the arclength of the TFI projector in the logical direction per-
pendicular to the feather direction then calculating the number of edges which
must be removed to give the desired zone size on the sheet. Once the num-
ber of edges is determined, the feather scheme determines which edges are
removed.

4 Trans-Finite Interpolation with Dendrites

Trans-Finite Interpolation (TFI) is a method of positioning the internal ver-
tices of logically-retangular mesh blocks based on the locations of the block’s
boundary vertices. Internal-vertex positions are computed as the vector sum
of two linear interpolations between opposing-face pairs, minus a bilinear in-
terpolation based on the corner vertices. For the special case of a block with
two opposing uniformly-distributed straight-line faces, the bilinear interpola-
tion exactly cancels the linear interpolation between the straight-line faces,
leaving the linear interpolation between the remaining two (curvelinear) faces.

The simplest possible TFI uses the interior vertex’s normalized logical co-
ordinates (i = I/(NI − 1), j = J/(NJ − 1)) as the interpolation parameters.



10 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

Such a TFI will not accurately propagate non-uniform boundary vertex distri-
butions into the interior. This defect may be overcome by replacing normalized
logical coordinates (i, j) with normalized curvelinear coordinates (u, v), with
u and v linear in arc length from 0 to 1 along opposing mesh block faces; u
increases with increasing i, and v increases with j. Curvelinear coordinates for
the (I, J)-th interior vertex are given by:

u = (1− v)ul(I) + vuh(I) (4)

v = (1− u)vl(J) + uvh(J) (5)

where ul(I) and uh(I) are the u coordinates of the I-th vertex on the v = 0
and v = 1 boundaries, respectively. A similar definition holds for vl(J) and
vh(J).

To extend TFI to dendrited mesh blocks we introduce Normalized Dendrite-
Logical (NDL) coordinates (id, jd). NDL coordinates for the (I, J)-th vertex
are calculated using active-vertex counts along the I and J mesh lines:

id = NIAconst−J(I, J)/Aconst−J(NI − 1, J) (6)

jd = NJAconst−I(J, I)/Aconst−I(NJ − 1, I) (7)

where Aconst−J(I, J) is the running count of active vertices along the Jth
constant-J mesh line starting with Aconst−J(0, J) = 0. AconstI(J, I) is defined
similarly. Note that NDL coordinates are normalized to the dimensions of the
unfeathered mesh block. NDL coordinates are, strictly speaking, only required
for active vertices, but it is useful for purposes of mesh visualization to apply
the TFI to inactive vertices as well. For this purpose we linearly interpolate id
values for succesive inactive vertices on a constant-J line from the id values of
the bracketing active vertices (and like-wise for jd values on constant-I lines).

TFI on a dendrited block is acomplished by replacing logical coordinates
(I, J) in equations 4 and 5 with NDL coordinates (id, jd). The block-boundary
coordinates ul, uh, vl and vh are now determined by linear interpolation be-
tween successive boundary vertices, e.g.:

f(id) = id − bidc
ul,dendrite(id) = (1− f(id)) ul(bidc) + f(id) ∗ ul(dide). (8)

Figure 9 shows the effect of a dendrite aware TFI on a feathered fan
mesh. Note that the active vertices are uniformly distributed along each of
the block’s interior arcs.

5 Dendritic Mesh Smoothing

Historically, there are many methods proposed for mesh enhancement such as
those documented in [5], [9],[11], [13], and [14], for example. The presence of



Dendritic Meshing 11

Fig. 9. Application of TFI to a dendritic mesh block.

dendritic zones (elements) within the mesh to be enhanced present challenges
to algorithms designed for smoothing non-dendritic meshes. There are two
fundamental reasons why this is so: 1.) the presence of extra hanging nodes
in an element and 2.) applying constraints to those hanging nodes.

In the first case, the presence of hanging nodes means that for the dendritic
element the representation of physics is different than it is for the non-dendritic
elements. For example, consider a finite element context wherein it is desired to
solve a partial differential equation within a domain. Suppose a mesh consists
(in two-dimensions) of primarily simplex triangular elements, the presence of a
dendritic triangular element in the mesh will cause that element to no longer
be a simplex element. It may have up to three mid-side (hanging) nodes.
Consequently, dendritic elements are non-conforming (c.f., Section 5.5 of [4])
requiring modifications to the element basis function set.

In the second case, it is often required that the hanging nodes be placed
according to a constraint. A common constraint on node j, the local elemental
index of a hanging node, in an unstructured mesh is

xi
j =

1
2

(
xi

j+1 + xi
j−1

)
, (9)

where xi
j are the i = 1, . . . , D coordinate components in D-dimensional space

for the j ∈ 1, . . . , Ne (counter-clockwise numbered) nodes in element e.
The Laplace-Beltrami method of mesh enhancement (e.g., Chapters 5 –

9, [11]) is used in the following discussion as a means of illustrating how
these two issues impact a mesh enhancement algorithm. The discussion draws
extensively from Douglass [7].



12 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

5.1 Laplace-Beltrami Mesh Enhancement

Consider a domain, Ω, in three-dimensional Euclidean space, xi = (x, y), i =
1, 2, 3, which is described locally with parametric coordinates, ui = (u, v, w).
Then, harmonic coordinates, xi, are defined by the system

1
√
g

∂

∂uα

(
√
ggαβ ∂x

i

∂uβ

)
= 0, (10)

where, for the two-dimensional problems discussed here, i, α, β = 1, 2. The
contravariant metric tensor components gαβ are related to the covariant com-
ponents through gαγgγβ = δα

β and g = det (gαβ), where

gαβ =
∂xi

∂uα

∂xi

∂uβ
, (11)

and where the usual Einstein summation convention is applied to repeated
sub- or superscripts within a term and δα

β is the Kronecker delta.
To solve these equations for xi, the finite element method of weighted

residuals (MWR) ([1], [8]) is used to find an approximate solution. The partial
differential equation is converted to an equivalent weak form

I =
E∑

e=1

Ie = 0

Ie =
∫

Ωe

∂w

∂uα
gαβ ∂x

i

∂uβ

√
gd2u−

∫
∂Ωe

w
√
ggαβ ∂x

i

∂uβ
dsα (12)

where w is an appropriate weight function. The last term,the integral over
the boundary of Ωe, cancels for all interior element boundaries and is taken
to be zero for those element boundaries on the domain boundary subject to
natural boundary conditions.

The dependent variables within each element use a nodal interpolation of
the form

xi =
Ne∑
k=1

φk(u, v) Xi
k (13)

where k = 1, . . . , Ne and Ne is the number of element nodes with Xi
k =

(Xk, Yk) the coordinates of the kth element node and φk are the Ne basis
functions. The element in the physical (x, y)-plane is the image of a unit
element in the (u, v)-plane through the mapping xi = xi(u, v). It is common to
define a basis function set for a master element having coordinates ξi = (ξ, η)
so that the local ui-coordinates are mapped to the master element via, usually,
an isoparametric mapping

ui =
M∑

m=1

U i
m ψm(ξ, η), (14)



Dendritic Meshing 13

where U i are the coordinates of the element nodes in ui-space. Using isopara-
metric mapping, the number of basis functions in the map is equal to the
number of basis functions used in the approximate solution, M = Ne. Equa-
tion 12 is invariant when the integration variables are changed from ui to ξi

resulting in

Ie = Ke
ijX

i
j , where (15)

Ke
jk =

∫
Ωe

∂ψj

∂ξα
gαβ ∂ψ

i
k

∂ξβ

√
g dξdη. (16)

5.1.1 Hanging Nodes and Element Basis Functions

The element basis functions address the first issue discussed above, that of
the presence of hanging nodes in dendritic elements. Consider either linear
triangles or bilinear quadrilateral elements as in Becker et al. [1], for example,
whose basis functions are given in the upper part of Table 1.

Table 1. Basis functions for triangle and quadrilateral elements.

Linear Triangle Basis Bilinear Quadrilateral Basis

ψ1 = 1− ξ − η ψ1 = 1
4
(1− ξ)(1− η)

ψ2 = ξ ψ2 = 1
4
(1 + ξ)(1− η)

ψ3 = η ψ3 = 1
4
(1 + ξ)(1 + η)

ψ4 = 1
4
(1− ξ)(1 + η)

6-Node Triangle Basis 8-Node Quadrilateral Basis

ψ1 = ψ̄1 − 1
2
(Ψ6 + Ψ4) ψ1 = ψ̄1 − 1

2
(Ψ8 + Ψ5)

ψ2 = Ψ4 ψ2 = Ψ5

ψ3 = ψ̄2 − 1
2
(Ψ4 + Ψ5) ψ3 = ψ̄2 − 1

2
(Ψ5 + Ψ6)

ψ4 = Ψ5 ψ4 = Ψ6

ψ5 = ψ̄3 − 1
2
(Ψ5 + Ψ6) ψ5 = ψ̄3 − 1

2
(Ψ6 + Ψ7)

ψ6 = Ψ6 ψ6 = Ψ7

Ψ4 = 4(1− ξ − η) ξ δs1 ψ7 = ψ̄4 − 1
2
(Ψ7 + Ψ8)

Ψ5 = 4 ξ η δs2 ψ8 = Ψ8

Ψ6 = 4 η (1− ξ − η) δs3 Ψ5 = 3
8
(1− η)(1− ξη) δs1

Ψ6 = 3
8
(1 + ξ)(1− η2) δs2

Ψ7 = 3
8
(1 + η)(1− ξ2) δs3

Ψ8 = 3
8
(1− ξ)(1− η2) δs4



14 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

Dendritic elements, in the context of the finite element method, cannot
be treated as though they are simple 3-node triangles or 4-node quadrilateral
elements. The presence of mid-side (i.e., hanging) nodes must be accounted
for in the basis function set for the element. Such elements are considered
transition elements as in Huang and Xie [12] who present a transition 5-
node quadrilateral finite element addressing this refinement issue, which forms
the foundation of the treatment of dendritic element interpolation used here.
Dendritic triangular elements are handled in an analogous fashion.

(−1,−1) (0,0) (1,0)

(0,1)
(−1,1)

(1,−1)

(1,1)

3
3

21

4

η

ξ

η

ξ

6 5

2415

6

7

8

Fig. 10. Master transition quadrilateral (left) and triangular (right) elements.

In general, a transition triangular element may have up to 3 hanging nodes
giving as many as 6 nodes per element while a 4-node quadrilateral transition
element may have up to 4 hanging nodes leading to as many as 8 nodes in the
element. For the most general cases, these elements are shown in Figure 10. If
the linear/bilinear basis functions of the upper part of Table 1 are designated
with an overbar (ψ̄1, for example), then it can be shown that the basis func-
tions for general transition (i.e., dendritic) elements are as given in the lower
part of Table 1. The Ψi contain a multiplier, δst, the Kronecker delta function.
The subscripts refer to the sides of the element containing a hanging node.

5.1.2 Hanging Node Constraints in Dendritic Elements

The second issue described above, hanging node constraints, can be addressed
in the following manner. We have seen that a typical constraint for hanging
node Xi

HN in an element is given in Equation 9. This constraint may be
imposed by an appropriate penalty method or by explicitly imposing it after
each iterative solution of the assembled problem, thereby lagging the solution.
In Carey [3], a method is presented which applies a penalty method for inter-
element constraints such as for hanging nodes. If the governing system admits



Dendritic Meshing 15

to a variational principle, as does Equation 10, and if the constraint within
the element is of the form Gv = 0, then the penalty functional becomes

Jε =
1
2
vtK v − vt F +

ε−1

2
vt GtGv, (17)

where ε−1 is the penalty factor and from which the stationary condition gives(
K +

1
ε
GtG

)
v = F. (18)

Since Equation 10 has a variational principle and the constraints are ex-
pressible in the form Gv = 0, then Equation 18 applies. For an element with
Ne nodes the constraint condition vector, G, has components

Gi =

 1 if i = j
− 1

2 if i = j ± 1
0 otherwise

(19)

for node j a hanging node. For an element with 5-nodes and node 4 the
hanging node, the constraint condition vector would be

[
0, 0,−1

2
, 1,−1

2

]
Xi

1

Xi
2

Xi
3

Xi
4

Xi
5

 = 0, (20)

and the element matrix becomes

Ke +
1
ε


0 0 0 0 0
0 0 0 0 0
0 0 1

4
−1
2

1
4

0 0 −1
2 1 −1

2

0 0 1
4

−1
2

1
4

 . (21)

Should there be Ne
HN ≤ Ne hanging nodes within the element, Ne

HN con-
straint matrices sum together as in Equation 21 for 1 hanging node, using
Equation 19 as before.

5.1.3 Metric Tensor Components

Ie is a non-linear function of the nodal coordinates, Xi, through the metric
tensor components. In terms of their interpolants, the covariant metric tensor
components are



16 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

g11 =
∂ψk

∂ξ

∂ψl

∂ξ
Xi

k X
i
l , (22)

g12 =
∂ψk

∂ξ

∂ψl

∂η
Xi

k X
i
l , (23)

g22 =
∂ψk

∂η

∂ψl

∂η
Xi

k X
i
l . (24)

Mesh motion relies upon the metric components to “enhance” the mesh
from an initial state to a “better” final state by solving the assembled global
problem. The metric components are known only within an element. Conse-
quently, if the metric tensor components are calculated using the initial mesh
coordinates, then the metric tensor components are consistent with the initial
mesh and the mesh does not “move.” To circumvent this problem, a target
mesh defined by the centroid of a composite region defined by the elements in
contact with a node is used. In general, this point will not coincide with the
node’s coordinates, but will converge to it in the final solution. For node n, let
M elements be in contact with it. Each surrounding element has an area, Am,
and centroidal coordinates, Ci

m = (XCm
, YCm

) (e.g., [2]) so that the centroid
coordinates of the composite region are then

Ci
n =

∑M
m=1AmC

i
m∑M

m=1Am

. (25)

Ci
n is used in place of Xi

n in the metric tensor component calculations. The
centroid of each boundary node that is also a fixed (i.e., a Dirichlet) boundary
condition node is set to its current coordinates.

Since the metric tensor components are a nonlinear function of the nodal
coordinates, an iterative solution for the coordinates is required. Here a simple
fixed point scheme is used, while others have used a Jacobian-free Newton-
Krylov method to solve the fully nonlinear problem (e.g., [10]).

5.1.4 Example Results

As an example illustrating enhancement of a composite triangular-quadrilateral
element mesh, consider the initial mesh in Figure 11 (left side) having both tri-
angles and quadrilateral elements. The triangle elements are dendritic, while
only some of the quadrilateral elements are dendritic. In particular, the quadri-
lateral dendritic elements have two hanging nodes per element, a more chal-
lenging test of the algorithm. This example also illustrates boundary node
movement. The right side of the Figure shows the mesh after enhancement,
allowing the boundary nodes on the top and bottom boundaries to move,
requiring 57 iterations to converge (εconverged = 1.%).

A mesh quality metric [11](pg. 466) is defined to be E/E0, where

E =
1
2

∫
Ω̂

(
g11 + g22

) √
g dξdη (26)



Dendritic Meshing 17

(Initial Mesh) (Enhanced Mesh)

Fig. 11. An example two dimensional initial mesh (left) having both triangular
and quadrilateral elements and also ”hanging node” or ”dendritic” elements. The
quadrilateral dendritic elements have two hanging nodes per element and the trian-
gular elements have one hanging node. The enhanced mesh with moving boundary
nodes (right) with E/E0 = 0.822993.

and E0 is E evaluated on the initial mesh. E is the energy functional (vari-
ational principle) for the mesh. Consequently, when viewed relative to its
initial value it gives a measure of the fractional energy in the mesh with the
goal being to minimize the ratio, E/E0. The final mesh minimizes the en-
ergy functional producing a minimum value of E/E0, giving the solution to
Equation 10.

Iterations cease when the largest node movement on the mesh is less than
1% of the maximum node movement of the first iteration.

6 Conclusion

We present a method for constructing dendritic meshes for two-dimensional
domains. The resulting meshes consist of predominantly quadrilateral ele-
ments with triangles occurring when two quadrilateral nodes occupy the same
position, that is, are degenerate quadrilaterals. A detailed discussions of rel-
evant data structure concerns, feathering structured meshes to produce den-
dritic elements, trans-finite interpolation on dendritic meshes, and smooth-
ing dendritic meshes are presented. Applying these ideas to construct three-



18 B. A. Jean, R. W. Douglass, G. R. McNamara, and F. A. Ortega

dimensional dendritic meshes is, in principle, straightforward, but has not yet
been done.

Acknowledgement. The authors wish to acknowledge these additional members of
the ASC Setup Team at Los Alamos National Laboratory without whose contribu-
tion this article and the software used for dendritic meshing could not have been
completed: S. Davis Herring, Laura M. Lang, and Joseph H. Schmidt.

References

1. E.B. Becker, G. F. Carey, and J.T. Oden. Finite Elements: An Introduction,
volume I. Prentice-Hall International, London, 1981.

2. Paul Bourke. Calculating the area and centroid of a polygon.
http://paulbourke.net/geometry/polyarea, July 1988.

3. G. F. Carey, A. Kabaila, and M. Utku. On penalty methods for interelement
constraints. Computer Methods in Applied Mechanics and Engineering, 30:151–
171, 1982.

4. G. F. Carey and J.T. Oden. Finite Elements: An Introduction, volume II.
Prentice-Hall International, London, 1983.

5. Graham F. Carey. Computational Grids: Generation, Adaptation, and Solution
Strategies. Taylor & Francis, Washington, DC, USA, 1997.

6. R. Courant, K. Friedrichs, and H. Lewy. Über die partiellen differenzengleichun-
gen der mathematischen physik. Mathematische Annalen, 100(1):32–74, 1928.
English translation: IBM Journal, March 1967, 215–234.

7. Rod W. Douglass. Laplace-Beltrami enhancement for unstructured two-
dimensional meshes having dendritic elements and boundary node movement.
Journal of Computational and Applied Mathematics, in review, 2011.

8. Bruce A. Finlayson. The Method of Weighted Residuals and Variational Prin-
ciples. Academic Press, New York, 1972.

9. Pascal Jean Frey and Paul-Louis George. Mesh Generation: Application to
Finite Elements. Hermes Science Publishing, Oxford UK, 2000.

10. G. Hansen, A. Zardecki, D. Greening, and R. Bos. A finite element method for
three-dimensional unstructured grid smoothing. J. Comput. Phys., 202(1):281–
297, 2005.

11. Glen A. Hansen, Rod W. Douglass, and Andrew Zardecki. Mesh Enhance-
ment: Selected Elliptic Methods, Foundations, and Applications. Imperial Col-
lege Press, 2005.

12. Feiteng Huang and Xiaoping Xie. A modified nonconforming 5-node quadrilat-
eral transition finite element. Adv. Appl. Math. Mech., 2(6):784–797, 2010.

13. Patrick M. Knupp and Stanly Steinberg. Fundamentals of Grid Generation.
CRC Press, Boca Raton, Florida USA, 1994.

14. Joe F. Thompson, Bharat K. Soni, and Nigel P. Weatherill. Handbook of Grid
Generation. CRC Press, Boca Raton, Florida USA, 1999.


